3 and 4 .Determinants and Matrices
normal

If $A = \left[ {\begin{array}{*{20}{c}}
1&0\\
{\frac{1}{2}}&1
\end{array}} \right]$ , then $A^{50}$ is

A

$\left[ {\begin{array}{*{20}{c}}
1&{25}\\
0&1
\end{array}} \right]$

B

$\left[ {\begin{array}{*{20}{c}}
1&0\\
{25}&1
\end{array}} \right]$

C

$\left[ {\begin{array}{*{20}{c}}
1&0\\
0&{50}
\end{array}} \right]$

D

$\left[ {\begin{array}{*{20}{c}}
1&0\\
{50}&1
\end{array}} \right]$

Solution

If we calculate $A^{2}=\left[\begin{array}{cc}{1} & {0} \\ {2\left(\frac{1}{2}\right)} & {1}\end{array}\right]$

$A^{3}=\left[\begin{array}{cc}{1} & {0} \\ {3\left(\frac{1}{2}\right)} & {1}\end{array}\right], \ldots \ldots \ldots, A^{50}=\left[\begin{array}{cc}{1} & {0} \\ {50\left(\frac{1}{2}\right)} & {1}\end{array}\right]$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.