- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
If $A = \left[ {\begin{array}{*{20}{c}}
1&0\\
{\frac{1}{2}}&1
\end{array}} \right]$ , then $A^{50}$ is
A
$\left[ {\begin{array}{*{20}{c}}
1&{25}\\
0&1
\end{array}} \right]$
B
$\left[ {\begin{array}{*{20}{c}}
1&0\\
{25}&1
\end{array}} \right]$
C
$\left[ {\begin{array}{*{20}{c}}
1&0\\
0&{50}
\end{array}} \right]$
D
$\left[ {\begin{array}{*{20}{c}}
1&0\\
{50}&1
\end{array}} \right]$
Solution
If we calculate $A^{2}=\left[\begin{array}{cc}{1} & {0} \\ {2\left(\frac{1}{2}\right)} & {1}\end{array}\right]$
$A^{3}=\left[\begin{array}{cc}{1} & {0} \\ {3\left(\frac{1}{2}\right)} & {1}\end{array}\right], \ldots \ldots \ldots, A^{50}=\left[\begin{array}{cc}{1} & {0} \\ {50\left(\frac{1}{2}\right)} & {1}\end{array}\right]$
Standard 12
Mathematics